برنامه دومین همایش ملی فناوریهای کوانتمی

۱۰ و ۱۱ خرداد ۱۴۰۲ – دانشگاه صنعتی اصفهان

چهارشنبه ۱۴۰۲/۳/۱۰	
عنوان برنامه (نام سخنران)	ساعت برنامه
پذیرش و ثبت نام	۰۷:۳۰ <i>–</i> ۰۸:۴۰
افتتاحيه همايش	۰۸:۴۰–۰۹:۱۵
شهریار سلیمی، دانشگاه کردستان	•9:10-•9:0•
محمد رضایی، دانشگاه صنعتی شریف	•9:0•-1•:70
پذیرایی	1.:10-1.:0.
امیر یوسفی، دانشگاه EPFL سوئیس	1.:011:20
محمد لامعي رشتي، IPM	11:70-17:••
نماز و ناهار	17:••-14:••
مهدی عبدی، دانشگاه صنعتی اصفهان	14:•• -14:40
محسن اكبرى، دانشگاه خوارزمى	14:30-10:10
مهدی صامتی، دانشگاه صنعتی اصفهان	10:110:40
پذیرایی	10:40-16:0
یحیی اکبری، دانشگاه شهید مدنی آذربایجان	19:00-19:40
على مرتضى پور، دانشگاه گيلان	18:411:10
ستاد اپتیک و کوانتم-معاونت علمی ریاست جمهوری	17:10-17:00
على اسفنديار	
نشست کوانتم اصفهان (ویژه اساتید و مدعوین)	*•:••-**:••

پنج شنبه ۱۴۰۲/۳/۱۱		
عنوان برنامه (نام سخنران)	ساعت برنامه	
افسون سلطانی، دانشگاه صنعتی اصفهان	۰۸:۳۰-۰۹:۰۵	
حمیدرضا محمدی، دانشگاه اصفهان	• 9:• 0–• 9:4•	
علی معتضدی فرد، مرکز فناوریهای کوانتمی ایران	9:41.:10	
پذیرایی + پوستر	1.:10-1.:0.	
امین بابازاده، دانشگاه وین اتریش	1.:011:20	
حسين احمدوند، دانشگاه صنعتي اصفهان	11:70-17:••	
نماز و ناهار	17:••-14:••	
على اسديان، دانشگاه تحصيلات تكميلي زنجان	14:••-14:30	
علی دلفی رضایی، دانشگاه شهید بهشتی	14:20-10:10	
پذیرایی	10:110:3.	
محمد واحدی، دانشگاه علم و صنعت	10:30-16:0	
على مهرى تونابي، دانشگاه صنعتى مالك اشتر اصفهان	19:0-19:40	
اختتامیه + اهدای هدیه ویژه همایش به شرکت کنندگان!	19:411:4.	

چکیدہ	عنوان سخنراني	سخنران
در این سخنرانی، گسیلندگی تک فوتون از نقص بلوری تھی جا-نیتروژن در الماس مورد بررسی قرار می گیرد. سپس چگونگی استفاده از بلورهای الماس حاوی این نقصها به عنوان حسگرهای خیلی دقیق میدان مغناطیسی مورد بحث قرار می گیرد.	حسگرهای مغناطیسی دقیق بر پایه گسیلنده های تک فوتون الماس	حسين احمدوند
Photons exhibit many interesting quantum features, such as entanglement and bosonic indistinguishability, which contradict our classical view. The nonclassicality of entangled photons is best uncovered by Bell non-locality tests. In this talk, I explain other nonclassicality tests, based on the notion of contextuality, properly designed for witnessing each specific feature of photons.	Designing contextuality tests for witnessing various nonclassicalities of photons	على اسديان
Circuit quantum electrodynamics (QED) is the study of the interaction of nonlinear superconducting circuits, acting as artificial atoms for quantum information processing, with quantized electromagnetic fields in the microwave-frequency domain. In recent decades, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors. In this presentation I will describe how it now plays an essential role in current approaches to gate-based quantum computing with superconducting circuits.	gate-based quantum computing with superconducting circuits	محسن اکبری
بعد از بحث مختصري در مورد اطلاعات فيشر كوانتومى، نامساوي هايى را به دست مى آوريم كه همه حالت هاي كوانتومى جداپذير آنها را برآورده مى كنند. بنابراين حالت هاي كوانتومى كه اين نامساوي ها را نقض مى كنند حالت هاي درهم تنيده هستند. البته حالت هاي كوانتومى نيز وجود دارند كه اين نامساوي ها را برآورده مى كنند و بنابراين، اين نامساوي ها قادر به تشخيص آنها نيستند. پس اين نامساوي ها معيارهاي كافى براي درهم تنيدگى هستند. معيار حاصل مكمل معيار ترانهاد جزئى مثبت است زيرا مى تواند تعدادي از حالت هاي درهم تنيده با ترانهاد جزئى مثبت را نيز تشخيص دهد. حالت هاي كوانتومى كه به وسيلۀ اين معيار تشخيص داده مى شوند در انجام مترولوژي كوانتومى مفيد هستند.	معیار در هم تنیدگی برای سیستم های چند جزئی بر اساس اطلاعات فیشر کوانتوی Entanglement criterion for multiparticle systems based on quantum Fisher information	یحیی اکبری
Transformations on quantum states form a basic building block of every quantum information system and quantum logic gates are one of the basis optical elements for them. In this presentation I will describe how it is possible to generate high dimensional quantum states and their corresponding logic gats. The created gates can be used in many applications such as generating high dimensional quantum Bell States which are a distinctive set of maximally entangled two-particle quantum states. They form the foundation for many quantum protocols such as teleportation, dense coding, and entanglement swapping.	High dimensional quantum logic gates	امین بابازاده
پیشرفتهای اخیر در علوم و فناوریهای کوانتومی نوین، نیاز به پژوهشهای نظری عمیقتری را به منظور شناخت هرچه بیشتر پدیدههای کوانتومی رانشی- اتلافی آشکار کرده است. نظریه پاسخ خطی که در فصل مشترک فیزیک ماده چگال، سامانههای کوانتومی بس ذرهای، و اپتیک کوانتومی قرار دارد قادر به توصیف طیف وسیعی از پدیدههای کوانتومی است. در این میان، میتوان به پدیدههای جالبی مانند شکافتگی مدهای نرمال، شفافیت القاییده الکترومغناطیسی (Electromagnetically Induced Transparency)،	پاسخ خطی سامانههای کوانتومی رانشی- اتلافی Linear response of driven- dissipative quantum systems	على دلفى رضايى

		کندسازی سرعت نور، تشدید فانو (Fano resonance)، و بهره القاییده اپتومکانیکی (Optomechanically induced gain) اشاره کرد. نکته اساسی برای توضیح چنین پدیدههایی، در مدلسازی ریاضی پاسخ خطی یک سامانه کوانتومی رانشی-اتلافی به یک اختلال ضعیف وابسته به زمان، و توصیف پذیرفتاری سامانه بر حسب تابع گرین آن، نهفته است. در این سخنرانی نشان میدهیم که چگونه می توان چنین پدیدههایی را با استفاده از نظریه پاسخ خطی در چهارچوب نظریه سامانههای کوانتومی باز توصیف کرد و همچنین به برخی کاربردهای مهم آنها در فناورهای کوانتومی نوین اشاره می کنیم.
محمد رضایی	پردازش سیگنال های کوانتومی در ارتباطات و محاسبات کوانتومی	نور کوانتومی درعلم و فناوری اطلاعات کوانتومی نقش اساسی دارد. بگونه ای که نقش بی بدیلی در حوزه های مختلف پردازش اطلاعات کوانتومی مانند ارتباطات کوانتومی و تصویربرداری کوانتومی ایفا می کند و همچنین امید است که نقش تعیین کننده ای در محاسبات کوانتومی آینده داشته باشد. یکی از مهمترین دلایل چنین طیف وسیعی از کاربردها این است که نور برای در برگرفتن اطلاعات کوانتومی و ارائه می کند. این بستر ها عبارت اند از قطبش، رنگ یا طیف فرکانسی، بازه زمانی ارائه می کند. این روش های معناو و با ظرفیت اطلاعات کوانتومی و و تصویر یا جبهه موج نور و تعداد فوتون و کوادرچرها در سیگنال کوانتومی نوری است. از این روی بسترهای مختلف میگناهای کوانتومی نوری میتواند نقش است. از این روی بسترهای مختلف سیگناهای کوانتومی نوری میتواند نقش فزاینده وتعیین کننده ای بر فناوری های مختلف اطلاعات کوانتومی بشر. در این سخنرانی تکنیک های مختلف پردازش سیگنالهای کوانتومی بالاخص در این سخنرانی تکنیک های مختلف پردازش سیگنالهای کوانتومی بالاخص محاسبات و ارتباطات کوانتومی منجمله شبکه های ارتباطاتی دسترسی چندگانه و یاده مای مختلف دور و نقش آنها در فناوری های مختلف کوانتومی بالاخص
افسون سلطاني	مخابرات کوانتومی مجتمع Integrated quantum communication	مخابرات کوانتومی با هدف ایجاد ارتباط امن بین فرستنده و گیرنده بر اساس قوانین مکانیک کوانتومی، یکی از موضوعات مورد توجه در مباحث کوانتومی به شمار می رود. در سالهای اخیر، استفاده از فناوریهای مجتمع سازی در کاربردهای مخابراتی و پردازش اطلاعات کوانتومی پیشرفتهای زیادی داشته است. افزارههای مجتمع با داشتن ویژگیهای مهمی چون مقیاس پذیری، تکرارپذیری، هزینهی کم و قابلیت اتصال به یکدیگر، ظرفیت ایجاد تحولات چشمگیر در زمینهی محاسبات و ارتباطات کوانتومی را دارند. از همین رو، بررسی وضعیت کنونی و همچنین، چالشهای پیش روی بسترهای مختلف مجتمع فوتونیکی به همراه افزارههای مربوطه، از ضرورتهای گام نهادن در مسیر این تحول است.
شهریار سلیمی	همبستگی های کوانتومی و نقش آنها در عدم قطعیت آنتروپی و باتری های کوانتومی	همبستگیهای کوانتومی از خواص مهم غیر کلاسیکی سامانه های فیزیکی هستند که در دهه های اخیردر ارتباط با آنها تحقیقات بسیاری صورت گرفته است. اهمیت این شاخه از علم فیزیک به اندازه ای است که جایزه نوبل فیزیک در سال ۲۰۲۲ میلادی به دانشمندانی تعلق گرفت که در این حوزه کار می کنند. در این سخنرانی نخست به معرفی و بررسی درهمتنیدگی و ناهمخوانی کوانتومی (به عنوان همبستگی های کوانتومی) و سپس به نقش بارز آنها در رخداد پدیده های فیزیکی و محاسبات دقیق مربوط به آنها پرداخته و این نقش را در بدست آوردن عدم قطعیت آنتروپی، توان و کار استخراج شده از باتریهای کوانتومی مورد مطالعه قرار می دهیم.

گیتهای کوانتمی واحدهای سازنده کامپیوترهای کوانتومی هستند. در سیستم یونهای محصور، این گیت های کوانتومی معمولا در رژیم برهمکنش ضعیف بین لیزر و یونها پیاده سازی می شوند تا قابلیت کنترل و دقت گیت کوانتومی حفظ شود. این امر به کاهش سرعت پردازش اطلاعات در گیت می انجامد. با افزایش قدرت برهمکنش لیزر-یون امکان افزایش سرعت پردازش اطلاعات فراهم می شود. اگرچه با توجه به حساسیت اطلاعات کوانتومی نسبت به اختلالات محیط، این افزایش سرعت مطلوب است ولی سیستم در این رژیم از حالت خطی خارج می شود و کنترل آن به سادگی انجام نمی پذیرد. در این سخنرانی روشی برای کنترل و پیاده سازی گیتهای کوانتومی در سیستم یونهای محصور در رژیم برهمکنش قوی ارائه می شود.	پیادهسازی گیتهای کوانتومی برای سیستم یونهای محصور در رژیم برهمکنش قوی	مهدی صامتی
سامانه های مبتنی بر مواد دو-بعدی از یک سو و فراوری کوانتومی از سوی دیگر، دو موضوعی هستند که طی دو دهه اخیر مورد علاقه بسیاری از پژوهشگران قرار گرفته اند. در این سخنرانی به بررسی امکان استفاده از سیستم های دو-بعدی جهت پیاده سازی برخی از فناوریهای کوانتومی به ویژه حسگری کوانتومی و محاسبات کوانتومی میپردازیم. سپس به طور ویژه بر روی ساختار هگزاگونال نیترید بور تمرکز کرده و لوازم استفاده از آن به عنوان بستری مناسب در حوزه فناوریهای کوانتومی را مورد بررسی قرار میدهیم.	فراوری اطلاعات کوانتومی در سامانه های دو-بعدی	مهدی عبدی
با اثبات نامساوی بل در اواسط دهه 1960 میلادی، امکان انجام آزمایشهائی در مورد پایههای نظری مکانیک کوانتمی فراهم شد و آزمایش هائی هم انجام گرفت. نتایج این آزمایش ها متضاد بودند. در نتیجه انجام آزمایش های دیگری لازم بودند. یکی از این آزمایش ها، در نیمه اول دهه 1970، در مرکز تحقیقات هسته ای ساکلی در فرانسه با زوج در هم تنیده پروتون انجام گرفت که نتایج آن با مکانیک کوانتمی سازگار بودند. در این مقاله، پس از شرح کوتاهی از آزمایش های متقدم، به شرح آزمایش پراکندگی پروتون پروتون می پردازیم و اشاره کوتاهی هم به نتایج آزمایش های بعدی می کنیم.	شرحی از آزمایشی قدیمی درباره نامساوی بل، و پارادوکس انیشتین- پودولسکی- روزن	محمد لامعي رشتي
طیفسنجی کوانتومی، یکی از بروندادههای علم اطلاعات کوانتومی است. این علم از دیدگاه انفورماتیک به جهان هستی مینگرد. از نقطه نظر این علم، صرف این که بتوانیم اطلاعاتی کسب کنیم که بتواند بین دو حالت فیزیکی همبوشان، تمایز قائل شود، تداخل کوانتومی بین این حالتها از بین میرود. به بیان دیگر تداخل کوانتومی بین دو حالت وقتی رخ میدهد که تمییزپذیر نباشند. بر این پایه فرایند طیفسنجی کوانتومی با تکیه بر مفهوم «همدوسی القایی بدون گسیل القایی» کار میکند. انجام مشخصهیایی اپتیکی (طیفسنجی یا اسپکتروسکوپی) مواد (مانند اندازه گیری ضریب جذب، عبور و بازتاب) در ناحیهی مادون قرمز، IR، از طیف امواج الکترومغناطیسی شامل مواد (به صورتهای جامد، مایع و گاز)، تیغههای اپتیکی، لایه ها یا پوششهای نازک اپتیکی توسط فوتونهای دارای همبستگی کوانتومی ایده اصلی این سخنرانی است.	طیفسنجی کوانتومی توسط فوتونهایی که جسم را ندیدهاند Quantum spectroscopy by photons that have not touched the object	حمیدرضا محمدی
هر سیستم کوانتومی واقعی به طور اجتناب ناپذیری با محیط اطراف خود برهمکنش میکند. چنین برهمکنشهای خود به خودی عمدتاً منجر به از بین رفتن همدوسی و سایر منابع کوانتومی موجود در سیستمهای کوانتومی میشود. اما حفظ منابع کوانتومی از جمله درهمتنیدگی که به عنوان اصلیترین منبع برای انقلاب کوانتومی جدید به شمار میرود، بسیار حائز اهمیت است. بنابراین اعتبار سنجی تجربی و کنترل منابع کوانتومی یک سیستم کوانتومی باز از اهداف مهم نظریه اطلاعات کوانتومی است. از سوی دیگر، امروزه فناوریهای کوانتومی که قادر به دستکاری سیستم های کوانتومی منفرد باشند، به شدت در حال توسعه میدان خارجی به حرکت در آوردن آنها و همچنین مدوله سازی فرکانس گذار آنها میدان خارجی به حرکت در آوردن آنها و همچنین مدوله سازی فرکانس گذار آنها میدان دنقش سازندهای را در جهت حفاظت و کنترل منابع کوانتومی ایفا نماید. ضمن اینکه اثبات مینماییم، چنین دستکاریهای این امکان را بدست میدهد تا سنجههای مختلف رفتار کوانتومی سیستمهای باز را به دقت مورد مطالعه قارداده و نقاط ضعف آنها را برطرف نماییم.	بهینه سازی منابع و سنجه های کوانت <i>وی</i> به کمک دستکاری کیوبیتها	على مرتضى پور

در این ارائه قصد دارم به معرفی اجمالی فعالیت های 8 ساله اخیرمان د ر زمینه کاربرد سامانههای الکترو-اپتومکانیک کوانتومی؛ فرایند SPDC در کریستالهای غیرخطی مرتبهی دوم؛ و امواج ساختاریافته ی کوانتومی (فرم دهی شده) در مترولوژی و اطالعات کوانتومی بپردازم. سعی بر این است که بدون ورود به جزئیات، گستره ی وسیعی از کارهای تحقیقاتی را به اشتراک گذاشته تا در صورت تمایل از همکاری محققان و اساتید علاقه مند به این حوزهها بهره مند شویم تا	کاربردهای متنوع سامانههای الکترواپتومکانیک کوانتومی و کریستالهای غیرخطی مولدِ SPDC در علوم و فناوریهای کوانتومی	علی معتضدی فر
کامی استواریز بسوی توسعه ریست بوم قناوری توانیومی در ایران برداریم. برمزنگاری کوانتومی در مقایسه با سایر فناوریهای کوانتومی، گسترش تجربی بیشتری داشته است. پرکاربردترین زمینه ی کاری رمزنگاری کوانتومی، توزیع کلید کوانتوم (QKD) است که با استفاده از پروتکلهایی بر پایهی دانش فیزیک کوانتوم، برای مهمترین موضوع در هر سامانه ی QKD، امنیت است. تحت مجموعهای از فرضیهها، QKD از لحاظ نظری دارای امنیت پی قید و شرط است. اما در عمل، یک شکاف عمیق بین فرضیههای نظری و برپایههای تجربی QKD وجود دارد. غیر قابل اجتنابی رنج میبرند. یک روش مهم برای بهبود عملکرد سامانههای QKD وجود این شکاف به این دلیل است که قطعات واقعی ایده آل نیستند و از نواقص کیر قابل اجتنابی رنج میبرند. یک روش مهم برای بهبود عملکرد سامانههای QKD حالت کلی، تولید، کنترل، انتقال و آشکارسازی حالت های کوانتومی چند بعدی در اینجا یک پروتکل QKD چند بعدی جدید، به نام پروتکل ترکیبی قطبش-فاز در اینجا یک پروتکل MD چند بعدی جدید، به نام پروتکل ترکیبی قطبش-فاز نمادی فیروی قطبش و فاز مربوط به یک ذره و با ترکیب پروتکلهای 84BB استاندارد قطبشی و فازی صورت می گیرد.	بهبود عملکرد سامانههای توزیع کلید کوانتومی (QKD) در حضور قطعات غیرایدهآل	على مهرى تونابي
در این ارائه، ابتدا مروری بر کلیات سامانه توزیع کلید کوانتومی، پروتکل های آن، روش های مختلف پیاده سازی آن و وضعیت کنونی پیاده سازی در کشورهای مختلف ارائه می شود. سپس نقاط آسیب پذیری و چالشهای مهم پیش روی توسعه سامانه های رمزنگاری کوانتومی مورد بحث قرار گرفت. نهایتا راهکارهای اصلی برای غلبه بر چالشهای موجود که مبتنی بر توسعه فناوری های جدید، روشهای جدید پیاده سازی و پروتکلهای جدید هست، ارائه خواهد شد.	چالشهای پیش رو در توسعه سامانه های رمزنگاری کوانتومی	محمد واحدى
Quantum control and measurement of mechanical oscillators have been achieved by coupling mechanical oscillators to auxiliary degrees of freedom in the form of optical or microwave cavities, allowing numerous advances such as quantum state transfer or mechanical entanglement. An enduring challenge in constructing such hybrid systems is the dichotomy of engineered coupling to an auxiliary degree of freedom, while being mechanically well isolated from the environment, that is, low quantum decoherence – which consists of both thermal decoherence and dephasing. We overcome this challenge by introducing a superconducting circuit optomechanical platform with a directly measured thermal decoherence rate of 20.5 Hz (corresponding to 7.7 milli-second T ₁) as well as a pure dephasing rate of 0.09 Hz. This enables us to reach to 0.07 quanta motional ground state occupation (93% fidelity) and realize mechanical squeezing of 2.7 dB below zero-point-fluctuation.	Superconducting circuit optomechanics: from milli- second quantum decoherence to topological lattices	امیر یوسفی